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Purpose. To develop empirical models for predicting the binding between a drug and β-cyclodextrin.
Specifically, the logarithm of the 1:1 binding constant is expressed as the function of various molecular
descriptors of the drug. Many potential drugs exhibit poor aqueous solubility. Also, the amount available
for solubility studies is limited early in drug development. Thus, models that show which excipients can
increase a drug’s solubility are useful because formulation scientists can focus on them experimentally.
Methods. Twenty-five descriptors were considered based on molecular characteristics governing
complexation. These include the drug’s size and/or shape, the dispersion of its electron cloud, its
lipophilicity, and its flexibility. The training set contains 258 ligands, ranging from drug-like molecules to
small polar organic compounds.
Results. Two models were developed. The first is derived by partial least squares regression and consists
of all 25 descriptors. The r2 determined by cross-validation is 0.79. The second contains four variables and
was constructed by multiple linear regression. Its cross-validated r2 is 0.65.
Conclusions. Due to its simplicity, the second model is recommended over the first. The most important
descriptor in both models is the calculated log P, indicating that drugs with greater lipophilicity form
stronger complexes with β-cyclodextrin.
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INTRODUCTION

Many drug candidates exhibit high lipophilicities and low
water solubilities. Such characteristics typically correspond to
poor bioavailability which reduces the likelihood of develop-

ing a successful therapeutic formulation. Therefore, techni-
ques that increase the aqueous solubilities of such candidates
are highly desired. One method involves their complexation
with cyclodextrins (CDs), cylindrical excipients made up of
glucose units (1–5). The most common unmodified CDs are
α, β, and γ-CD which are composed of six, seven, and eight
glucose units respectively. In order to increase their solubil-
ities, a random number of their hydroxyl groups are
substituted with various chemical moieties, including sulfobu-
tyl ether or hydroxypropyl groups. This random substitution
imparts an amorphous nature to the CDs which results in
increased solubility (6). Nevertheless, the unmodified CDs
still possess higher solubilities than the vast majority of
hydrophobic drug candidates. CDs possess a torus-like
structure in which each glucose unit is connected to an
adjacent unit by 1,4 α-linkages (3, 4). The last unit is joined to
the first, completing the ring. The conformation of CD
resembles a bottomless bucket with both narrow and wider
openings and an internal cavity. The primary hydroxyl
groups are oriented towards the narrow entrance while the
secondary hydroxyl groups face the wider opening (4). The
potential for CDs to form inclusion complexes has been
attributed to many factors, one of which is the lowered
hydrophilicity of the internal cavity (3). Water molecules
tend to exclude themselves from this region due to the
higher energy required to extricate themselves from the
hydrogen bonding network of the aqueous environment
prior to entering the cavity (3). The lowered presence of
water in the CD interior leads to an environment more
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ABBREVIATIONS: AL, linear curve type; AN, negative deviation
from linearity; AP, positive deviation from linearity; B, curve type
where drug solubility decreases at high cyclodextrin concentrations;
CD, cyclodextrin; [CD], cyclodextrin molar concentration; ΔG°,
standard free energy (of binding); K, 1:1 binding constant; Ln K,
natural logarithm of the 1:1 binding constant; Log K, logarithm of the
1:1 binding constant; log P, logarithm of the octanol/water partition
coefficient; MLR, multiple linear regression; NH, amino group; OH,
hydroxyl group; p, probability value; PC, principal components; PLS,
partial least squares; PLSR, partial least squares regression; R, gas
constant; r, correlation coefficient; r2, square of correlation
coefficient; r2adjusted, square of adjusted correlation coefficient; r2cv ,
square of correlation coefficient from leave-one-out cross validation;
S, total molar solubility; S0, water solubility; SH, thiol group; T,
temperature in Kelvin.
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hydrophobic than that of bulk water and provides a pocket
in which lipophilic compounds may reside (3). Such com-
pounds may also be stabilized within the cavity by hydrogen
bonding and/or the interaction of dispersion forces between
the two species (3). The result, in ideal formulations, is a
water soluble complex in which the CD is essentially a
carrier of the drug compound. CDs can accommodate a wide
range of drug sizes, ranging from 300 to 700 g/mol.
Examples include nimesulide, a non-steroidal anti-inflam-
matory drug, complexed with β-CD (7,8). The drug has a
molecular weight of 308.31 g/mol and a dissolution time of
over two hours. Complexation with β-CD decreases that time to
one hour. In contrast, itraconazole which is used to treat
esophageal candidiosis has been co-formulated with hydrox-
ypropyl β-CD (8,9). It has a much greater molecular weight of
705.71 g/mol and a solubility of less than 0.001 mg/ml. Its
complexation with that CD increases its overall solubility to
17 mg/ml, an amount suitable for IV infusion. Thorough
reviews on CD-drug formulations published in the last five
years include those of Challa et al. (1), Loftsson and Duchene
(2), and Szejtli (8). Other such reviews older than five years
include those of Connors (3), Uekama et al. (4), Stella and
Rajewski (5), and Loftsson (10).

While many mechanistic aspects of CD mediated drug
solubilization can be explored, the purpose of this study was
to develop an empirical model to predict the binding constant
between a compound and β-CD based upon the values of
certain molecular descriptors of the compound. Not only
would such a model lead to a better understanding of the
drug characteristics important for complexation, it would also
serve as an important tool for facilitating drug formulation,
especially with regard to poorly soluble compounds. At the
early stages of drug development, the amount of drug
available for carrying out solubility studies with various
excipients is usually insufficient. Therefore, the availability
of a model to predict whether a particular excipient or
technique is feasible for increasing the solubility of a potential
drug is highly desired. In addition to preserving the limited
amount of drug available, time, labor, and the cost of
materials are also reduced. The empirical models developed
here predict the binding constant between a drug and β-CD.
The value determines whether the drug is a good candidate
for inclusion within this CD and therefore whether the CD
may be used to increase the drug’s solubility to the dosage
required for administration. This is based upon the inference
that the value of the binding constant is directly related to the
amount of drug-CD complex present and therefore the
amount of drug solubilized by the CD. A review of the
literature concerning complexation or solubilization of drug-
like molecules with CDs reveals a number of different
empirical models. Although most show high predictive ability,
there are concerns with their utility and whether their results
can be confidently accepted. For example, the small size of
the training set of a three term model by Suzuki et al. (11) may
limit the predictive ability of that model. The narrow range of
compounds in the training sets of two models by Klein et al. (12,
13) also has the same effect. Finally, the fragment based
approach utilized by Suzuki et al. (14) and Katritzky et al. (15)
restricts the types of compound that can be analyzed. These
models are compared and contrasted with the models developed
in this study in the “DISCUSSION” section.

MATERIALS AND METHODS

Summary

Our models predict the 1:1 binding constant (K) between
a drug and β-CD based upon the values of various molecular
descriptors of the drug. The descriptors were selected based
on a literature review of the characteristics important for
complexation. The training set used to derive the models was
assembled by mining the scientific literature for studies on β-
CD complexation. The experimental binding constants from
these studies are for the 1:1 association between drug and
CD. Finally, both partial least squares regression and multiple
linear regression were used to derive the models.

Molecular Descriptors: Calculation and Selection Rationale

The compounds of the training set were constructed with
the molecular modeling software package HyperChem v7.51
(Hypercube Inc., Gainesville, FL USA) and were saved in
that program’s HIN format. The software Dragon Profes-
sional v5.4 was then used to calculate the compounds’
molecular descriptor values (16). The 25 descriptors are listed
in Table I and were evaluated for model inclusion based upon
their incorporation in previous models from the literature as
well as on their putative importance in explaining the
interactions between the compounds and β-CD. In addition,
the values of the descriptors are not dependent on molecular
conformation. Some of the training set compounds have
many possible conformations and considering them all is
beyond the scope of this study. The following four paragraphs
summarize the salient features of each descriptor while more
thorough descriptions can be found in the comprehensive
Handbook of Molecular Descriptors by Todeschini and
Consonni (17).

Although many instances of β-CD complexation are
enthalpically driven, the hydrophobic effect still plays a major
role in the association of compounds with the CD (18). This is
supported by the observation that the more non-polar regions
of a ligand typically partition into the relatively hydrophobic
CD interior while the remaining polar areas face the aqueous
environment (3). Therefore descriptors of hydrophobicity,
including calculated log P (ALOGP), the hydrophilic factor
(HY), and topological polar surface area (TPSA), were
considered for the model. ALOGP is determined by the
Ghose–Crippen method where a molecule’s atoms are
classified according to a set of 120 pre-defined atom types
(17,19). The assigned hydrophobic constants of those atoms
are summed to yield the log P value. Higher values
correspond to increased lipophilicity. HY quantitates the
hydrophilicity of a molecule based upon the number of
hydrophilic groups (–OH, –SH, –NH). Higher values indicate
greater hydrophilicity. TPSA is the surface area of a
molecule’s polar atoms—oxygen, nitrogen, and sulfur as well
as any attached hydrogen atoms—determined by a fragment
based approach (20).

The other factor affecting complexation is the com-
pound’s size and shape. For example, a compound may be too
large or too small to fit optimally within a CD cavity. It may
also be too spherical to complement the CD’s toroid shape or,
conversely, its degree of ellipticity may be adequate for a
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complementary match. In addition, the amount of branching
can have a dual effect. A certain degree of branching may be
necessary to achieve optimal van der Waals contacts with the
CD interior while excess branching may lead to steric clashes
between the compound and the CD interior or even prevent
binding by hindering the compound’s entry. Descriptors of
size include the molecular weight (MW) and van der Waals
volume (SV) while shape descriptors include spherosity
(SPH) and the Kier–Hall α-modified shape indices (S1κ,
S2κ, and S3κ). SPH indicates the degree to which a
molecule’s shape resembles a sphere with greater values
corresponding to a less spherical and more planar form. S1κ
describes the relative cyclicity of a molecule while S2κ
measures the spatial density or branching. S3κ provides
information on the centrality of branching, i.e. whether
branching is more prevalent at the extremities or at the

center of a molecule. The connectivity indices (χ0, χ1, χ2, χ3,
χ4, and χ5) were also considered in developing the model. χ0

is dependent on the degree of saturation or branching of a
compound while χ1 and χ2 quantitate the degree of (non-
double or -triple bond) saturation about single and double
bond units, respectively (11). χ3 to χ5 provide similar, but
unique, information regarding more complex bond units.
Finally, the Balaban distance-sum connectivity index (J) was
also evaluated. J measures the number of bond units that
each atom is apart from every other atom in a compound.
Higher values indicate smaller distances, reflecting a molecule’s
compactness. Within an isometric series, highly branched
isomers possess greater J values than more linear forms.

A third factor affecting complexation is the interaction
between electron clouds of a compound and those of β-CD
(3). The resulting polarization leads to stabilization of the

Table I. Molecular Descriptors Selected for Constructing the Empirical Models

Symbol Name Property Training set average Training set range

ALOGP Ghose-Crippen octanol–
water partition coeff. (logP)

Hydrophobicity/
hydrophilicity

1.9±1.2 −2.0–5.7

HY Hydrophilic factor Hydrophobicity/
hydrophilicity

0.03±0.80 −0.9–3.1

TPSA Topological polar surface
area using N,O,S,P polar
contributions

Hydrophobicity/
hydrophilicity

46±37 0–182.8

MW Molecular weight Size 199±109 32–765
SV Sum of atomic van der

Waals volumes (scaled on
Carbon atom)

Size 16±9 3–66

SPH spherosity Shape 0.8±0.2 0–1
S1κ 1-path Kier alpha-modified

shape index
Shape 10±6 2–40

S2κ 2-path Kier alpha-modified
shape index

Shape 4±2 1–15

S3κ 3-path Kier alpha-modified
shape index

Shape 2.6±1.6 0–9

χ0 Connectivity index chi-0 Shape 10±5 2–38
χ1 Connectivity index chi-1

(Randic connectivity index)
Shape 6.5±3.7 1–26

χ2 Connectivity index chi-2 Shape 5.9±3.8 0–26
χ3 Connectivity index chi-3 Shape 4.6±3.6 0–23
χ4 Connectivity index chi-4 Shape 3.6±3.2 0–19
χ5 Connectivity index chi-5 Shape 2.7±2.7 0–15
J Balaban distance

connectivity index
Shape 2.1±0.4 0.8–3.5

SP Sum of atomic
polarizabilities (scaled on
Carbon atom)

Electron cloud
interactions

17±10 3–71

SS Sum of Kier–Hall
electrotopological states

Electron cloud
interactions

35±20 8–122

AMR Ghose–Crippen molar
refractivity

Electron cloud
interactions

53±28 8.3–191.8

AROM Aromaticity index Electron cloud
interactions

0.7±0.5 0–1

JGT Global topological charge
index

Electron cloud
interactions

0.47±0.15 0–0.77

nCIR Number of circuits Flexibility 2.4±3.1 0–15
nCIC Number of rings Flexibility 1.6±1.3 0–8
PHI Kier flexibility index Flexibility 3.1±1.9 0.6–11.5
RBF Rotatable bond fraction Flexibility 0.07±0.06 0–0.24
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complex through complementary van der Waal contacts
between the two species. The magnitude of such interactions
correlates with the size of the compound because larger
molecules possess greater electron clouds. Therefore, many
descriptors of electron density will also have a component
reflecting compound size. Such descriptors include the sum of
atomic polarizabilities (SP), the sum of Kier Hall electro-
topological states (SS), and the molar refractivity (AMR). SP
reflects the hardness or the degree to which a molecule can be
polarized, as opposed to the degree to which it is polarized.
SS sums the electronic accessibilities of a molecule’s atoms
and represents their probability of interaction with another
molecule. AMR is a measure of the volume occupied by an
atom or molecule. Closely related to spatial density, it
quantitates the amount of matter filling that volume. Two
additional descriptors, the aromatic index (AROM) and the
global topological charge index (JGT), were also considered.
Unlike the previous three, both are independent of molecular
size. AROM simply reflects the presence of aromatic groups
while JGT provides information on charge transfer in a
molecule as it relates to topology.

Finally, the fourth factor influencing complexation is the
flexibility or rigidity of a compound. This characteristic
reflects a compound’s ability to adapt to the shape of the
CD cavity (12). Thus a large, but flexible, molecule can
deform in order to achieve a complementary fit, whereas a
rigid compound of the same size would be unable to bind.
Descriptors that measure flexibility include the number of
rings (nCIC) or circuits (nCIR) in a molecule, the Kier
molecular flexibility index (PHI), and the fraction of freely
rotatable bonds over all bonds present (RBF). nCIC and
nCIR serve as measures of rigidity with higher numbers of
rings or circuits corresponding to reduced flexibility. PHI is
proportional to the number of rotatable bonds and is
inversely proportional to the amount of rings present. Higher
values of both PHI and RBF indicate greater flexibility.

Training Set Characteristics

The training set consists of 258 observations of unique β-
CD–ligand complexes and was constructed by mining the
scientific literature for studies on β-CD–ligand interactions.
Some studies focused on the binding of a particular com-
pound or group of compounds with β-CD (18,21–26) while
others detailed the development of other empirical models to
predict β-CD – ligand complexation (11,12,27–31). Many of
the studies determined the 1:1 binding constants from phase
solubility curves, the majority of which were found to be
linear (AL-type) (12). Others used titration calorimetry to
determine the binding constants (21). Yet others measured
the binding of a ligand based upon how well it displaced a
reference ligand from the β-CD interior (31). It should be
noted that the latter two techniques do not yield phase
solubility curves, and thus the curve type could not be
obtained. Fortunately, this is not an issue since this study is
not concerned with the prediction of higher-order complex
formation. In addition, knowledge of the phase solubility
curve type does not affect the procedures used in this study.
Only the 1:1 β-CD–ligand binding constant is needed. These
values were recorded in the training set. If a study reported

binding free energies instead, they were converted to binding
constants via the equation ΔG°=−RT Ln K where ΔG° is the
Gibbs standard free energy of binding, R is the gas constant,
T is the temperature in units of Kelvin, and Ln K is the
natural logarithm of the 1:1 binding constant.

All studies were performed at 25°C in water. No co-
solvents were added, although salts or buffers have been used
in some in order to regulate the pH, and therefore control the
ionization state of acidic or basic ligands. Of the 258 ligands in
the training set, 112 were found to be ionizable, i.e. consisting
of amines, carboxylic acids, phenolic OH groups, or combi-
nations of the three. The majority of these (∼90%) were
studied under pH conditions at which they were neutral.

Many of the training set compounds are either drugs or
possess drug-like structures while others are small organic
molecules. The latter consists of both non-polar and polar
compounds, with some having high miscibility in water. The
molecular descriptors of the compounds were calculated as
described above and entered into the training set. The
average molecular weight (MW) of the compounds is 199±
109 g/mol and ranges from 32 to 765. The average log P
(ALOGP) is 1.9±1.2 and ranges from −2.0 to 5.7. Table I
shows the averages and ranges of all 25 descriptors for all
compounds of the training set.

CD–Ligand Database

A database was developed with Microsoft Office Access
2003 (Microsoft Corp., Redmond, WA USA) in order to store
information compiled from various CD–ligand binding stud-
ies. The training set for this study was generated by screening
it for β-CD–ligand binding experiments performed at 25°C in
water. The architectural format of the database consists of
three separate tables. The first contains entries for 13
different CDs and includes fields for properties such as CD
name, number of sugar units, substituents, and the degree of
substitution. The second table has entries for 350 ligands with
fields for the 25 molecular descriptors previously mentioned
as well as fields for ligand water solubility. In addition, both
tables contain the Kekule structures of the corresponding
molecular species. The third table consists of 642 unique
entries, each containing the experimental conditions and
results from studies on a specific CD–ligand pair. The table
is dynamically linked to the previous two tables in order to
facilitate the entry of new data. For example, if a new study
contains a CD which has been previously entered into the
first table, the user can simply establish a relationship
between the entry for that CD in the first table and a new
entry in the third table. This way, the CD characteristics need
not be reentered each time that excipient appears in a binding
or solubility study with a unique ligand. Fields in the third
table include those for experimental conditions such as
temperature, pH, ionic strength, buffers, solvents, co-solvents,
co-solutes, and CD and ligand formal charges. Fields for
experimental results contain binding constants for different
CD-ligand stoichiometric ratios as well as binding free
energies. Finally, a search form based upon a global search
query containing the fields from all three tables was set up to
allow for quick retrieval of the information from those
separate tables on a single form.
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Statistical Techniques

Minitab 14.1 (Minitab Inc., State College, PA USA) was
used to perform the statistical analyses, including multiple
linear regression, partial least squares regression, principal
component analysis, and the comparison of correlation
coefficients. Microsoft Office Excel 2003 (Microsoft Corp.,
Redmond, WA USA) was used to organize the data and
facilitate the analysis.

RESULTS

β-CD Partial Least Squares Model

The partial least squares (PLS) model predicts the Log K
of binding between a compound and β-CD based on the
values of the compound’s molecular descriptors. It was
initially constructed using multiple linear regression and
contained all 25 descriptors. However, the variance inflation
factors indicated that many of the terms were highly collinear
and therefore partial least squares regression (PLSR) was
employed to build this model.

PLSR is an extension of principal component analysis
(32,33). The technique redefines the coordinate space of the
current variables resulting in an equal number of new
variables, or principal components, that are based upon the
variance in the data. The first principal component encom-
passes as much of the variance as possible with subsequent
components spanning less of the remaining variance than
previous ones. Collectively, the total of the principal compo-
nents represents 100% of the variance. By including those
principal components needed to maximize the predictive
ability, or cross-validated r2 (r2cv ), in the model, PLSR has
the advantage of addressing collinearity and noise without the
need for variable reduction. In particular, collinearity is
addressed by extracting specific principal components. A
single principal component can be extracted from a group of
highly collinear variables to represent the majority of the
variance from that group. Noise from the data is addressed by

utilizing only those principal components needed for
maximizing r2cv . Including more principal components in the
model will result in overfitting, i.e. the model will begin to
predict the contribution from the noise.

The PLS model was internally validated by leave-one-
out cross-validation which resulted in an optimized model of
20 principal components with an r2cv of 0.79. Table II lists the
regression coefficients while Fig. 1 shows the plot of cross-
validated predicted Log K values versus the corresponding
experimentally determined values for the compounds of the
training set. Cross-validated predicted values are determined
by omitting a single observation from the training set and
calculating the predicted Log K for that observation based on
the remaining training set. This is contrary to ordinary
predicted values which are obtained without removing those
observations from the training set. For the model, a plot of
cross-validated predicted values versus ordinary predicted
values shows that the correlation between the two is very high
(Fig. 2). This shows that the training set size is large enough
such that omission of a single observation does not affect its
predictive ability. Fig. 1 also shows a plot of the residuals
versus the experimental Log K values. Most of the residuals
are below one Log K unit and show no apparent trend,
indicating that non-linear or higher order terms in the
model’s equation are not needed.

The importance of each descriptor to the model was
evaluated by ranking the magnitudes of the standardized
coefficients (Table II). This is because studying the values of
the regular coefficients may lead to the erroneous conclusion
that a descriptor with a larger coefficient is more important to
the model than one with a coefficient that approaches zero.
For example, the coefficient of JGT is 1.501 while that of MW
is 0.008, suggesting that JGT has greater influence. These
coefficients, however, do not account for the differences in
the magnitudes between the two descriptors’ values. The
average value of JGT for all compounds in the training set is
0.47±0.15 and ranges from 0 to 0.77. For MW the average is
larger, 199±109, and ranges from 32 to 765. It is now clear
that the small value of the regular coefficient of MW
mitigates the large values of MW observed in the training
set compounds. Conversely, the opposite applies to JGT.

Fig. 1. Plot of Log K values predicted by the PLS model versus the
experimental Log K values for the compounds of the training set. The
predicted Log K values were determined by leave-one-out cross
validation. The insert shows the residual plot. r2cv cross-validated r2;
PC principal components, n training set size.

Fig. 2. For the PLS model, plot of Log K values predicted by leave-
one-out cross-validation versus those predicted by implementing the
full training set.
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Thus, one must examine the standardized coefficients to
account for this. They are obtained by transforming the set of
values of each descriptor to possess a mean of zero and a
variance of one. The standardized coefficients for MW and
JGT are 0.970 and 0.239, respectively, indicating that MW is
actually more important than JGT to the model. In other
words, a change of one standard deviation of MW influences
the predicted Log K to a greater degree than a one standard
deviation change in JGT.

Ranking the standardized coefficients shows that S1κ is
the most important descriptor in model. S1κ is the Kier–Hall
α-modified shape index which is a measure of the relative
cyclicity of a compound. A decrease in the value indicates an
increase in cyclicity with multi-cyclic compounds having lower
values than monocyclic ones. Since the S1κ coefficient is
negative, an increase in S1κ yields a lower Log K, meaning
that a decrease in cyclicity leads to lowered binding affinity.
The sensitivity of Log K to changes in the cyclicity of a
compound may be due to the cylindrical shape of the CD
cavity. Circularly shaped compounds or compounds with
circular moieties would better complement the CD interior
than irregularly shaped compounds. The least important
descriptor is the hydrophilic factor. HY is relatively insensi-
tive to hydrophobic molecules, and since much of the training
set consists of such compounds, the value of HY is not
expected to change appreciably.

Additionally, the importance of the descriptors was also
evaluated by removing each one from the model and
determining the r2cv. This revealed that the calculated log P
(ALOGP) is the most crucial by far. Its removal resulted in a
much greater reduction in r2cv than the removal of any other

descriptor, including S1κ. In contrast to HY, which is
unimportant according to its low standardized coefficient,
ALOGP is more sensitive to differences in hydrophobicity
among the compounds of the training set. The descriptor’s
importance suggests that molecules with greater lipophilicity
are more likely to partition into the relatively hydrophobic
CD cavity. The concern exists, however, that since the
calculated log P contains information on molecular size, the
binding constant may depend on this aspect rather than on
hydrophobicity (3). Fortunately, this is not the case since
ALOGP is poorly correlated (r<0.31 at most) with all the
other descriptors of the compounds of the training set,
including size descriptors such as MW or SV.

β-CD Reduced Variable Model

To complement the PLS model, a simplified model was
developed through a multi-step process involving the appli-
cation of multiple linear regression (MLR). A flow chart of
the procedure is shown in Fig. 3. First, the application of
stepwise regression (α-to-enter and α-to-remove both set to
0.15) reduced the number of descriptors from 25 to 15. For
this model, multicollinearity was then assessed by a combi-
nation of principal component analysis, correlation coefficient
examination, and variance inflation factor evaluation. From a
set of collinear descriptors, the descriptor whose values
showed the highest correlation with the experimental Log K
values was included in the model and the remaining
discarded. This step left ten descriptors for further evaluation.
Next, five non-significant descriptors were identified by p
values >0.05 obtained through MLR and subsequently
removed. In addition, the descriptor SV was replaced by SP.
The two are highly correlated (r=0.99), but SP contains
additional information on atomic polarization in addition to
shared information on molecular size. Furthermore, RBF was
removed. Like PHI, it is a measure of molecular flexibility but
is the less significant term. The resulting model determines
the Log K from the descriptors ALOGP, PHI, J, and SP. It
was internally validated by leave-one-out cross-validation and
has an r2 of 0.65, an r2adjusted of 0.64, and an r2cv of 0.63. The
term r2 is the square of the correlation coefficient. It is a
measure of the overall variation between values predicted by
the model versus experimentally determined values. The term
r2adjusted is a modified r2 that accounts for the number of terms
in the model. Adding unnecessary terms may result in a
higher r2 solely due to noise. The r2adjusted accounts for this and
may even decrease when such terms are included. Table III
lists the regression coefficients while Fig. 4 shows the plot of
the cross-validated predicted Log K values versus the
experimental values for the compounds of the training set,
as well as the residuals plot. Similar to the PLS model, most
of the residuals are within one Log K unit. Their uniform
distribution and lack of an apparent trend indicates that non-
linear or higher order terms are not required. As with the
PLS model, ALOGP was found to be the most important
descriptor in the reduced variable model. Its absence resulted
in a lower r2cv (0.36) than when any other descriptor was
removed. In contrast, the removal of SP, PHI, or J yielded an
r2cv of 0.43, 0.58, and 0.58, respectively.

The four terms that comprise the reduced variable model
each quantitate a unique molecular characteristic and can be

Table II. Coefficients and Standardized Coefficients of the PLSModel

Descriptor symbol Log K coefficient Standardized coefficient

S1κ −0.833 −5.115
SV 0.280 2.834
SP 0.238 2.553
χ1 −0.603 −2.422
χ2 0.512 2.129
S2κ 0.791 1.949
AMR −0.059 −1.815
χ3 0.439 1.730
χ0 −0.254 −1.545
χ5 −0.497 −1.440
MW 0.008 0.970
SS 0.038 0.825
nCIC −0.581 −0.820
PHI −0.328 −0.667
nCIR 0.182 0.614
ALOGP 0.438 0.584
χ4 0.158 0.545
AROM 1.054 0.524
TPSA 0.009 0.369
RBF 4.276 0.274
SPH −1.235 −0.243
JGT 1.501 0.239
J 0.497 0.202
S3κ −0.088 −0.158
HY −0.004 −0.003
Constant/Y-int 0.066 0
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categorized in terms of thermodynamic principles. SP is a
measure of polarizability or hardness and contains informa-
tion on size. It reflects the steric effects of complexation and is
thus related to the enthalpy of binding. The positive sign of
the descriptor’s coefficient suggests that a greater potential
for polarization leads to an increase in binding. If a
molecule’s electron cloud is soft, it may be able to adjust in
order to fit within the CD cavity. ALOGP conveys informa-
tion on solvent entropy, i.e. the hydrophobic effect. As
previously mentioned, the positive sign of ALOGP’s coeffi-
cient shows that ligands with greater lipophilicity have a
greater tendency to partition into the CD interior. The

Fig. 3. Procedure used to reduce the number of terms to obtain the reduced variable model.

Table III. Coefficients, Standardized Coefficients, and Descriptor p
Values for the Reduced Variable Model

Descriptor
symbol

Log K
coefficient

Standardized
coefficient p values

Constant −0.635 0 0.034
SP 0.077 0.829 <0.009
ALOGP 0.406 0.541 <0.009
PHI −0.180 −0.366 <0.009
J 0.753 0.307 <0.009

Fig. 4. Plot of the predicted Log K values determined by the reduced
variable model versus the experimental Log K values for the
compounds of the training set. The predicted Log K values were
determined by leave-one-out cross validation. The insert is the
residual plot. r2cv cross-validated r2, n training set size.
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descriptor PHI measures molecular flexibility which serves as
an indicator of configurational entropy. Its negative coeffi-
cient indicates that binding decreases as the flexibility of a
compound increases. Interestingly, this contrasts with the
results from molecular modeling studies which show that an
increase in configurational entropy, and presumably flexibil-
ity, actually leads to an increase in binding (34). Finally, J
provides information on the effect of ligand shape or
branching on complexation and, like SP, is related to the
enthalpy of binding. The positive sign of its coefficient shows
that an increase in compactness and/or branching leads to
greater complex formation. This is not surprising since
greater branching and more compactness ultimately results
in a more spherical structure. Since the CD cavity is a
cylinder, such a shape is an ideal fit.

DISCUSSION

Evaluation of the Training Set

The training set was assembled from molecules included
in the training sets of previous β-CD complexation models as
well as from compounds from various studies on β-CD–ligand
association. Since we did not perform these studies ourselves,
this precludes any firsthand knowledge of the researchers’
proficiency and the exact techniques and equipment used to
obtain the binding constants. Although the methods detailed
in those publications suggest that experimental conditions
were largely uniform—temperature set at 25°C and studies
performed in water—the conditions are not exactly the same
across all studies. As previously mentioned, in some studies
the pH was varied in order to study the ionizable ligands in
the neutral state. If the pH was not monitored carefully, the
ionization state may change, thus affecting the binding
constant. Indeed, studies have shown that the charged state
of a ligand results in a lower binding constant than the neutral
state (22). In addition, adjusting the pH requires the use of
buffers which in turn affects the solution ionic strength. Some
studies have found that an increase in ionic strength from ∼0 to
900 mM has a negligible effect on CD-ligand complexation (35).
Others, however, have observed a slight increase in binding
from 10 to 300 mM ionic strength (36). The manifestation of
such discrepancies and/or variations is not surprising when
aggregating many separate studies. The only way to address
these issues is to compile as large a training set as possible with
the expectation that variations in the quality of the data will even
out allowing for the true underlying trends to show through.

In addition, the method used to determine the β-CD–
ligand binding constants was not used as a criterion to include
or exclude compounds from the training set. It was observed,
however, that the phase solubility method was most often
used to determine that property (37). In these cases, the type
of solubility curves found (AP, AL, AN, or B) (37) was often
not reported, although AL-type curves predominated when it
was mentioned. In addition, using the phase solubility method
to determine the β-CD–ligand binding constant also requires
the water solubility of the ligand. This value can be difficult to
determine accurately, especially in the case of lipophilic
drugs, and any resulting experimental error will carry over
to the binding constant value. Other techniques used to
determine the binding constants include titration calorimetry

(21) and the measurement of a ligand’s ability to displace a
reference ligand from the β-CD interior (31). Since each
technique has its own unique sources of error, and because
the training set is essentially a compilation of these techni-
ques, this supports the need for as large a training set as
possible in order to smooth out such variations.

Furthermore, the training set was also constructed with
as wide a range of molecules as possible in order to reduce
the possibility of evaluating an underrepresented compound.
A diverse training set will more likely ensure that the
descriptor values of a novel compound will not fall at the
extremes of the ranges of the descriptor values of the training
set compounds.

Evaluation and Use of the Models

The PLS model is based on 25 descriptors and has an r2cv
of 0.79 while the reduced variable model consists of four
descriptors and has an r2cv of 0.65. This suggests that 21
descriptors essentially account for the 0.14 difference between
the r2cv values of the two models. The observation that four
descriptors constitute most of the variance may lead to
concerns of both overfitting, i.e. modeling the noise, and
inclusion of too many descriptors in the PLS model. It is for
these reasons that PLSR was employed. Twenty principal
components that contributed to the predictive ability were
included in the model and six, based on the noise, were
removed. In addition, concerns about excess descriptors are
addressed by the rule-of-thumb that at least five compounds
per variable are needed for a reliable model (38,39). The
training set contains 258 molecules which is over ten
compounds per descriptor.

Of the two, the reduced variable model is recommended
for predicting the Log K of novel compounds. Although the
PLS model shows better predictive ability, and the task of
calculating its many descriptors can easily be performed by a
simple computer program, the model may be influenced by
overfitting. In other words, there may be concerns that some
noise might be been incorporated despite having been
optimized at 20 principal components. Thus, the reduced
variable model is recommended because one can be certain
that due to having only four descriptors, its predicted binding
constants are largely free from noise. The concern in this
case, however, is that this model has lost some predictive
ability along with the noise. Nevertheless, this is mitigated by
the likelihood that the model is more inclusive than the PLS
model. Drugs with descriptor values that fall outside the
range of those values of the compounds of the training set
cannot be evaluated with confidence by the models. Such
outlying values are more likely to be present when using the
PLS model simply because it has many more descriptors than
the reduced variable model.

A ligand is appropriate for evaluation by the models if its
descriptor values lie within the range of values found in the
training set (fifth column in Table I). It is preferable though if the
ligand’s descriptor values are within one standard deviation of
the average descriptor values of the training set (fourth column
in Table I). As mentioned, this is more likely when using the
reduced variable model simply because it has less descriptors.

In addition to the binding constant, the models may be
used to predict the solubility enhancement of a compound by
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β-CD. This would estimate of the amount of β-CD needed in
a formulation in order solubilize the required dosage of a
drug. Assuming an AL-type solubility curve, the total drug
solubility can be determined with the Higuchi and Connors
(37) equation

S ¼ S0 þ KS0
1þKS0

CD½ �
where S is the total molar solubility of the drug, S0 is the drug
water solubility, K is the 1:1 β-CD–ligand binding constant,
and [CD] is the total concentration of β-CD. If S0 is not known
it must be confidently estimated. In addition, [CD] must be
less than 0.00163 M, the upper limit of β-CD’s solubility. This
implies that the total drug solubility cannot be greater than
0.00163 M, assuming a negligible S0 and a 1:1 binding of CD
and drug. One concern with estimating solubility this way is
that many β-CD–ligand complexes are either insoluble or
show decreasing solubility after a certain CD concentration
(1). This behavior is reflected in B-type phase solubility
curves. Unfortunately, the models developed here are not
able to predict this possibility at the current time. Future
work will focus on determining the ligand characteristics that
govern it.

Comparison with Previous Models from the Scientific
Literature

One of the goals of this study was to improve on the
limitations of previous empirical models. For example, a three
term model by Suzuki et al. was based on a training set of 33
diverse ligands ranging from drug-like molecules to small
polar organic compounds (11). It has an r2 of 0.92 and an r2cv
of 0.90 and is as follows: Log K ¼ �0:095 �0

� �2þ1:30 �0
� �þ

0:43 logP� 2:85. While the two r2 values suggest good
predictive ability, a plot of the Log K values predicted by
the model versus the experimental values of our training set
compounds shows a poor correlation (r2=0.07) for many of
the ligands (Fig. 5). Further analysis attributed the poor fits to
the χ0 term. The values of that descriptor in the training set
compiled by Suzuki et al. ranges from zero to 9.5 which is
much narrower than that of our training set. Subsequent

exclusion of compounds with χ0 greater than 9.5 from our
training set and reapplication of their model resulted in a
vastly improved fit (r2=0.69). Although the compounds
compiled by Suzuki et al. certainly constitute an eclectic set,
one may argue that more diversity is needed especially
regarding the drug-like molecules. Those included are
relatively small compared to other drugs, and their presence
results in the low range of χ0 in their training set. Fortunately,
our training set consists of larger drug molecules with much
greater χ0 values. In addition, Suzuki et al. also did not define
the types of compounds that are appropriate for evaluation
by their model. Since their training set is shown to be limited,
a guideline for what drugs can and cannot be evaluated is
needed.

The composition of the training set is also a concern for
two models developed by Klein et al. (12,13). One is
composed of first-order terms while the other contains both
linear and non-linear terms. The two are based on the same
training set of 70 compounds which consists exclusively of
drug-like molecules. The set is larger than that of Suzuki et
al., but the diversity is reduced which limits application of the
model to drug-like molecules. Unfortunately, the types of
drugs that are suitable for evaluation by their models was not
mentioned. Regardless, even if the model is used to evaluate
such compounds, the possibility exists that some molecules
could possess descriptor values that lie at the limits of the
ranges of those values of their training set compounds. To
reduce the possibility of such a situation, our training set was
constructed with as many diverse compounds as possible.

Two models, one by Suzuki et al. (14) and the other from
Katritzky et al. (15), were derived from the same robust
training set of 218 diverse ligands. Both utilize a fragment
based approach for determining the binding free energy
between a compound and β-CD. In this technique, a
molecule is analyzed for the presence of certain pre-defined
fragments or functional groups. Each group has a specific
contribution to the overall value of the binding free energy
which is obtained by summing those individual contributions.
The concern with these models lies not with their training set,
but rather with the fragment based approach itself. This
technique limits the types of compounds that can be
evaluated. A molecule that contains very little or none of
the fragments in the model training set cannot be properly
analyzed. Unfortunately, neither study explicitly mentioned
whether a compound with rare fragments could be confident-
ly evaluated not did they provide guidelines on how to
determine if a compound has an adequate number of
represented fragments for evaluation. However, Suzuki et al.
did provide a table of the frequency of each fragment in the
training set. One can judge form this whether a drug is well-
represented by the training set. Since we did not use the
fragment based approach, this concern is not an issue for our
models. Nevertheless, the two fragment based models have
very good predictive abilities and can be confidently applied
to compounds that have an adequate number of represented
fragments.

CONCLUSIONS

In this study, two empirical models were developed to
predict the binding between a ligand and β-CD. The binding

Fig. 5. Plot of Log K values determined by the model from Suzuki et
al. (11) versus the experimental Log K values for all compounds of
the training set.
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constant can be used to decide whether this CD is a suitable
excipient for increasing the solubility of a drug candidate. The
training set of the two models is larger and more diverse than
those of previous models in the literature. Thus, the models
developed here can be used with more confidence because it
is more likely that any ligand examined will be similar to
those in our training set. Our first model was developed with
partial least squares regression. It contains 25 descriptors and
has an r2cv of 0.79. Compounds whose descriptor values fall
within one standard deviation of the average descriptor
values of the training set (Table I) can be evaluated with it.
Multiple linear regression was used to construct the second
model. It contains four variables and has an r2cv of 0.65. The
second model is recommended over the first primarily
because less descriptor values are needed for calculation:
Compounds whose SP, ALOGP, PHI, and J descriptor values
fall within one standard deviation of the corresponding
average descriptor values of the training set (Table I) can
be examined with it. The calculated log P (ALOGP) was
found to be the most important descriptor in both models.
Removing it from either lowers their r2cv values to a greater
extent than when any other descriptor is removed. This
indicates that lipophilicity is the main property which governs
a ligand’s complexation with β-CD. Greater ALOGP values
correlate with greater binding.

For future work, we seek to improve the models by
increasing the size and diversity of the training set. This
would increase the accuracy of the predictions and would also
allow the models to be applied to a wider variety of drugs
because the likelihood of a drug having descriptor values that
are outliers from those of the training set is reduced. In
addition, the training set could be divided into separate
classes of compounds so that models can be made for specific
types of drug. Other future work includes developing new
models or modifying the current ones to predict whether a
β-CD–ligand complex will be insoluble, i.e. show B-type
solubility behavior. In addition, we will explore the possibility
of developing empirical models to predict the binding
between ligands and other CDs, including the more soluble
substituted CDs such as sulfobutyl ether CD and hydrox-
ypropyl CD.
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